

Problem Statement

With **limited control** over **pore size** and **shape**, existing nanopore fabrication methods fall short in **precision** and **reproducibility**, hindering critical advancements in **DNA sequencing**, molecular separation, and energy storage.

Our Solution

Precise control over pore size and shape

High consistency in reproduction

Improved selectivity in separation technologies

Irradiating Atomically-Thin h-BN Membrane Layer(s) with Charged Particles to Control Pore Size & Shape in Real Time

Charged Particle Beam

Hexagonal Boron Nitride (h-BN) Membrane Layer

Market Research

Innovative h-BN Nanopore Fabrication Kimberly Surja, Shereen Aissi, Garima Raman, Grant Chou, Yanmin Zhang, Danny Danishev

Performance Metrics Comparison with Competing Solutions

Materials:

Properties		Graphene	Polymer	Other Ceramics	hBN	1
Durability		*****	*****	*****	****	4
Stability	Chemical	*****	*****	*****	****	4
	Pore Geometry	★★☆☆☆	*****	★★★☆☆	****	۶ ا
	Electro- chemical	★★☆☆☆	*****	*****	****	F
	Thermal	*****	*****	****	****	F
Electrical Insulation		****	*****	*****	****	
Cost		\$\$\$	\$\$	\$	\$\$\$\$	

Fabrication method:

Properties	Etching	Lithography	Focused Ion Beam	Electron Beam	Μ
Precision	*****	*****	****	****	
Controllability	*****	*****	****	****	
Reproducibility	*****	*****	****	****	
Size Range	★★☆☆☆ >10 nm	★★☆☆☆ 100s nm	★★★ ☆ <1 nm	★★★ ☆ <1 nm	
Material Compatibility	***	****	****	****	Ø
Scalability	*****	*****	★★☆☆☆	****	4
Cost	\$\$	\$\$\$	\$\$\$	\$\$\$\$	

Legend: 🖌 Batteries

Sequencing

Gas/liquid **E** Separation

Global DNA Sequencing Competitive Landscape

Global DNA Sequencing Market Size and Growth

TAM ~\$15B Global DNA Sequencing Market

Global nanopore sequencing market

~\$272M

+22%

larket priority Æ Æ Æ Æ

Radioisotope Separation

CAGR in DNA sequencing market

> **Note:** The global nanopore sequencing market, valued at \$272M in 2023, is projected to grow at an 11.2% CAGR, reaching \$706M by 2032

Nanopore DNA Sequencing Market & Patent Landscape

Whole Genome Sequencing Market

US Nanopore Sequencing Market Potential

Acknowledgements

Inventor Professor Alex Zettl, Ph.D. Co-Inventor Gabriel Dunn, Ph.D. Co-Inventor Matt Gilbert, Ph.D.

TCO Lucian Sweitzer Professor Matthew Rappaport Mentor Kavisha Shroff

Asia

Pacific,

30.56%

