Quantum Circuits for **Superconducting Digital Computing**

Our Rapid Single-Flux Quantum (RSFQ) Multi-Output Toggle Flip-Flop (TFF) is an innovative circuit design for superconducting digital computing, enabling area-efficient designs with reduced power and latency.

- Applications: Quantum computing, high-speed digital circuits, cryo-sensors, HPC accelerators, AI/ML accelerators and datacenters. • Why We Need It: This TFF reduces the need for multiple cells in circuits,
- solving challenges of inefficiency and scaling in traditional RSFQ architectures.

Key Market	Key Actors	Cu
Quantum Computing	IBM, Google, D-Wave	Develop advancing
High-Performance Computing (HPC)	NVIDIA, Intel, Cray	Investing in e for Al
Cryo-Sensors	Superconductor Technologies Inc., LUX	Innovatin applications
Datacenters	Google, Microsoft, Amazon Web Services	Exploring e

Emerging Competitors:

Patent activity indicates a surge in RSFQ and TFF innovations:

- Velocity: Increasing filings globally since 2018, focused on scalability and power efficiency.
- Actors: Led by research institutions (Berkeley, MIT) and corporations (IBM, Northrop Grumman).
- Technology Maturity: Early-stage, with proof-of-concept demonstrated.

Adoption Timeline:

- quantum computing and cryo-sensors. datacenters and HPC. RSFQ matures further.

- 1–3 Years: AI/ML accelerators • **2–5 years**: Niche applications in • **5–10 years**: Expansion into • **10+ years**: Mainstream adoption as

• Reduces the number of JJs needed by

40-70%.

Competing

• Cuts power consumption up to 70%. • Lowers delay up to 64% compared to traditional designs

Team: Gladys Chiang (MTM), Kush Dasadia (MEng), Anna Judson (Law), Yae Lin Lee (LLM), Karthik Rajgopal (MEng), Justin Yim (MBA) Advisors: Matt Rappaport, Meriam Gay Bautista, Sebastian Ainslie

ompeting Solution	Advantages	Limitations
Traditional RSFQ	Established, scalable	Limited to two outputs, requiring additional cells for scaling, higher latency
MOS-based designs	Widely adopted, versatile	Slower, power-hungry, unsuitable for cryo
abatic Quantum-Flux- Parametron (AQFP)	Energy-efficient in theory	Immature, high tuning complexity

A Promising Alternative to CMOS -Reduce Operational Cost + Enhance Error Correction

SFQ based quantum control and readout will greatly improve latency,

reduce the I/O counts, cost and scalability.

Hybrid Classical-Quantum Integration

Advantages of Superconducting Technology:

- Compatibility in operating temperature
- Compatibility in energy level
- Compatibility in materials and devices

Paving the Way for Power-Efficient, Low-Latency Superconducting Solutions of Tomorrow

Measurement Results

2024 2035